Machine learning approaches to credit risk: Evaluating Turkish participation and conventional banks

dc.contributor.authorSugozu, Ibrahim Halil
dc.contributor.authorVerberi, Can
dc.contributor.authorYasar, Sema
dc.date.accessioned2026-01-22T19:52:05Z
dc.date.issued2025
dc.departmentŞırnak Üniversitesi
dc.description.abstractThis study investigates the impact of competition on credit risk in the Turkish banking system, focusing on Islamic (participation) and conventional banking under the same regulatory conditions regarding credit risk. The credit risk model is trained using CatBoost, extreme gradient boosting (XGBoost), random forest, and LightGBM algorithms, and the results are analyzed using Tree SHAP (SHapley Additive exPlanation) algorithms with swarmplots. The empirical analysis covers 33 conventional and 6 Islamic banks in T & uuml;rkiye, using annual data between 2009 and 2022. The findings reveal that (1) credit risk is relatively higher at participation banks than conventional banks; (2) competition increases credit risk; (3) loan size is a key determinant of credit risk; (4) profitability increases credit risk; and (5) economic growth reduces credit risk. This study recommends some policy measures, such as increasing the economy of scale at Islamic banks and implementing specific regulations at participation banks to reduce risk.
dc.identifier.doi10.1016/j.bir.2025.02.001
dc.identifier.endpage512
dc.identifier.issn2214-8450
dc.identifier.issn2214-8469
dc.identifier.issue3
dc.identifier.orcid0000-0002-7056-9265
dc.identifier.orcid0000-0002-1861-3118
dc.identifier.scopus2-s2.0-105003271894
dc.identifier.scopusqualityQ1
dc.identifier.startpage497
dc.identifier.urihttps://doi.org/10.1016/j.bir.2025.02.001
dc.identifier.urihttps://hdl.handle.net/11503/3662
dc.identifier.volume25
dc.identifier.wosWOS:001479388000001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofBorsa Istanbul Review
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WOS_20260122
dc.subjectCompetition
dc.subjectCredit risk
dc.subjectDual-banking system
dc.subjectMachine learning algorithms
dc.subjectTree SHAP
dc.titleMachine learning approaches to credit risk: Evaluating Turkish participation and conventional banks
dc.typeArticle

Dosyalar